A homological interpretation of Jantzen’s sum formula

نویسنده

  • Upendra Kulkarni
چکیده

For a split reductive algebraic group, this paper observes a homological interpretation for Weyl module multiplicities in Jantzen’s sum formula. This interpretation involves an Euler characteristic χ built from Ext groups between integral Weyl modules. The new interpretation makes transparent For GLn (and conceivable for other classical groups) a certain invariance of Jantzen’s sum formula under “Howe duality” in the sense of Adamovich and Rybnikov. For GLn a simple and explicit general formula is derived for χ between an arbitrary pair of integral Weyl modules. In light of Brenti’s work on certain R-polynomials, this formula raises interesting questions about the possibility of relating Ext groups between Weyl modules to Kazhdan-Lusztig combinatorics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE JANTZEN SUM FORMULA FOR CYCLOTOMIC q–SCHUR ALGEBRAS

The cyclotomic q-Schur algebra was introduced by Dipper, James and Mathas, in order to provide a new tool for studying the Ariki-Koike algebra. We here prove an analogue of Jantzen’s sum formula for the cyclotomic q-Schur algebra. Among the applications is a criterion for certain Specht modules of the Ariki-Koike algebras to be irreducible.

متن کامل

A Representation Theoretic Approach to the Wzw Verlinde Formula

By exploring the description of chiral blocks in terms of co-invariants, a proof of the Verlinde formula for WZW models is obtained which is entirely based on the representation theory of affine Lie algebras. In contrast to other proofs of the Verlinde formula, this approach works for all untwisted affine Lie algebras. As a by-product we obtain a homological interpretation of the Verlinde multi...

متن کامل

ct 2 00 9 Macdonald operators and homological invariants of the colored Hopf link

Using a power sum (boson) realization for the Macdonald operators, we investigate Gukov, Iqbal, Kozçaz and Vafa’s proposal for the homological invariants of the colored Hopf link, which include Khovanov-Rozansky homology as a special case. We prove the polynomiality of the invariants obtained by GIKV’s proposal for arbitrary representations. We derive a closed formula of the invariants of the c...

متن کامل

Sum Formula for Maximal Abstract Monotonicity and Abstract Rockafellar’s Surjectivity Theorem

In this paper, we present an example in which the sum of two maximal abstract monotone operators is maximal. Also, we shall show that the necessary condition for Rockafellar’s surjectivity which was obtained in ([19], Theorem 4.3) can be sufficient.

متن کامل

Hall Algebra in a Triangulated Category

By counting with triangles and the octohedral axiom, we find a direct way to construct the Ringel-Hall algebra associated to a triangulated category with (left) homological-finite condition. Our formula is a refinement of that in Peng-Xiao [5] and provides a modified version of Toën’s formula in [7]. 1. Calculation with triangles Given a finite field k with q elements, let C be a k-additive tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008